If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+36x-6=0
a = 6; b = 36; c = -6;
Δ = b2-4ac
Δ = 362-4·6·(-6)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12\sqrt{10}}{2*6}=\frac{-36-12\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12\sqrt{10}}{2*6}=\frac{-36+12\sqrt{10}}{12} $
| 3-m/11+11=12/5 | | k-5=k | | x+3-2x=-1/4+1/2x+5 | | 3x+14=9x−22 | | 7.4x-14.5=7.7 | | 5(h-92)=15 | | 2r®-3=-16 | | 3(3x+3)=-3(4x-4)-4x | | 3/7=(0.5)^t | | X-6=39-2x | | 2(4x+4)=-5(3x-2 | | 8x-25=61 | | x=12-(15+3x) | | 9=18u-9u | | 6.1=3w-13.1 | | 5-n=2.5 | | -6(x-11)=-138 | | 41-13v=-10v+14 | | 2x+125+x+163=180 | | x^2-4x+2=-6x+5 | | 24x-18=20x+12 | | 14x-58=82 | | 8c=6+5+ | | n/18=68/72 | | 5x+1=44 | | 7y-2-5y=8-3y | | x^2-9x+30=10 | | 1-3x=2{1-3(x+2)} | | -28-5x=-10x+2 | | 6x²-20=300-2x² | | x^2-13x-17=-7x-1 | | 6x-15=5x-20+5 |